- class sts_select.target_sel.StdDevSelector(scorer, std_dev=1.0, verbose=0)¶
Selects features based on the standard deviation of the score from the dataset max. From Lampos et al. (2017)
- Parameters:
scorer (BaseScorer) – Scorer object to use for scoring.
std_dev (float) – Standard deviation threshold.
verbose (int) – Verbosity level.
- fit(X, y)¶
Select features based on the standard deviation of the score from the dataset max. :param X: :param y: :return:
- set_params(**params)¶
Helper function to set parameters in a way that’s compatible with sklearn.
- Parameters:
params – Parameters to set.
- transform(X)¶
Transform the input X to only include the selected features.
- Parameters:
X – Input data.
- Returns:
Transformed data.
- class sts_select.target_sel.TopNSelector(scorer, n_features=30, verbose=0)¶
- Parameters:
scorer (BaseScorer)
n_features (int)
verbose (int)
- fit(X, y)¶
Select the top N features based on the X-y score. :param X: :param y: :return:
- set_params(**params)¶
Helper function to set parameters in a way that’s compatible with sklearn.
- Parameters:
params – Parameters to set.
- transform(X)¶
Transform the input X to only include the selected features.
- Parameters:
X – Input data.
- Returns:
Transformed data.