- class sts_select.scoring.BaseSTSScorer(X, y, X_names=None, y_names=None, cache=None, **kwargs)¶
Base class for using semantic textual similarity to score. Assumes that we have a simple function that takes two strings and returns a score on a uniform scale.
- Parameters:
X
y
X_names
y_names
cache
kwargs
- class sts_select.scoring.BaseScorer(X, y, X_names=None, y_names=None, cache=None, verbose=0, **kwargs)¶
Base scorer class. All scorers should inherit from this class.
- Parameters:
X – Source data to score.
y – Target data to score.
X_names – Source names to score.
y_names – Target names to score.
cache – Cache location for storing scores.
kwargs – Additional arguments.
- X_score(x1, x2)¶
- Parameters:
x1 (int)
x2 (int)
- X_y_score(x, y)¶
- Parameters:
x (int)
y (int)
- load_cache()¶
Load the cache.
- Returns:
- save_cache()¶
Save the cache.
- Returns:
- score(X, y)¶
Score the given X and y.
- Parameters:
X
y
- Returns:
- scored()¶
Check if the scorer has already been initialized.
- Returns:
- class sts_select.scoring.Chi2Scorer(X, y, cache=None, random_state=0, **kwargs)¶
Scorer for chi-squared (valid for categorical X and y only).
- class sts_select.scoring.FScorer(X, y, cache=None, random_state=0, **kwargs)¶
Scorer for chi-squared.
- class sts_select.scoring.GensimScorer(X, y, X_names=None, y_names=None, cache=None, model_path=None, verbose=0, model_type=None, **kwargs)¶
Scorer for the Gensim library.
- Parameters:
X – Source data to score (not used).
y – Target data to score (not used).
X_names – List of strings to score.
y_names – List of strings to score.
cache – Cache location for storing scores.
model_path – Path to the Gensim model.
model_type (type)
- score(X, y)¶
Scores the similarity of the Gensim embeddings.
- Parameters:
X – Source data to score (not used).
y – Target data to score (not used).
- Returns:
- class sts_select.scoring.MIScorer(X, y, cache=None, random_state=0, **kwargs)¶
Scorer for mutual information.
- class sts_select.scoring.PearsonsRScorer(X, y, cache=None, random_state=0, **kwargs)¶
Scorer for Pearson’s r.
- class sts_select.scoring.SentenceTransformerScorer(X, y, X_names=None, y_names=None, cache=None, model_path=None, verbose=0, **kwargs)¶
STS scorer using the SentenceTransformers library.
- Parameters:
X – Source data to score (not used).
y – Target data to score (not used).
X_names – List of strings to score.
y_names – List of strings to score.
cache – Cache location for storing scores.
model_path – Path to the SentenceTransformers model.
- score(X, y)¶
Generates the feature-feature and feature-target scores.
- Parameters:
X – Source data to score (not used).
y – Target data to score (not used).
- Returns: